Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Eur J Clin Pharmacol ; 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20240040

ABSTRACT

PURPOSE: A therapeutic agent that targets both viral replication and the hyper-reactive immune response would offer a highly desirable treatment for severe acute respiratory syndrome corona virus 2 (SARS-CoV-2, coronavirus disease 2019, COVID-19) management. Emvododstat (PTC299; 4-chlorophenyl 6-chloro-1-[4-methoxyphenyl]-1,3, 4,9-tetrahydro-2H-pyrido[3,4-b]indole-2-carboxylate) was found to be a potent inhibitor of immunomodulatory and inflammation-related processes by inhibition of dihydroorotate dehydrogenase to reduce the severity of SARS-CoV-2 infections This drug interaction study was performed to determine if emvododstat was an inhibitor of CYP2D6. METHODS: Potential drug-drug interactions between emvododstat and a CYP2D6 probe substrate (dextromethorphan) were investigated by measuring plasma dextromethorphan and metabolite (dextrorphan) concentrations before and after emvododstat administration. On day 1, 18 healthy subjects received an oral dose of 30 mg dextromethorphan followed by a 4-day washout period. On day 5, subjects received an oral dose of 250 mg emvododstat with food. Two hours later, 30 mg dextromethorphan was administered. RESULTS: When given with emvododstat, plasma dextromethorphan concentrations increased substantially, while metabolite levels (dextrorphan) remained essentially the same. Maximum plasma dextromethorphan concentration (Cmax) increased from 2006 to 5847 pg/mL. Dextromethorphan exposure (AUC) increased from 18,829 to 157,400 h·pg/mL for AUC0-last and from 21,585 to 362,107 h·pg/mL for AUC0-inf following administration of emvododstat. When dextromethorphan parameters were compared before and after emvododstat, least squares mean ratios (90% confidence interval) were found to be 2.9 (2.2, 3.8), 8.4 (6.1, 11.5), and 14.9 (10.0, 22.1) for Cmax, AUC0-last, and AUC0-inf, respectively. CONCLUSION: Emvododstat appears to be a strong CYP2D6 inhibitor. No drug-related treatment emergent adverse effects (TEAEs) were considered to be severe or serious. TRIAL REGISTRATION: EudraCT 2021-004626-29, 11 May 2021.

2.
Genes (Basel) ; 13(12)2022 12 13.
Article in English | MEDLINE | ID: covidwho-2163300

ABSTRACT

Cytochrome P450 is an enzyme involved in the metabolism of phase 1 xenobiotics, toxins, endogenous hormones, and drugs, including those used in COVID-19 treatment. Cytochrome p450 genes are linked to the pathogenesis of some multifactorial traits and diseases, such as cancer, particularly prostate cancer, colorectal cancer, breast cancer, and cervical cancer. Genotyping was performed on 540 supposedly healthy individuals of 5 Finno-Permic populations from the territories of the European part of the Russian Federation. There was a statistically significant difference between Veps and most of the studied populations in the rs4986774 locus of the CYP2D6 gene; data on the rs3892097 locus of the CYP2D6 gene shows that Izhemsky Komis are different from the Mordovian and Udmurt populations.


Subject(s)
Cytochrome P-450 CYP2D6 , Cytochrome P-450 Enzyme System , Humans , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Polymorphism, Genetic , Russia/ethnology
3.
Drug Metab Bioanal Lett ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2141267

ABSTRACT

Risperidone/olanzapine are antipsychotics used in Peru to control symptoms of psychosis. The objective was to review the available evidence on potential pharmacokinetic interactions mediated by CYP1A2 and CYP2D6 polymorphic genes between risperidone or olanzapine and selected drugs for the treatment of COVID-19. A bibliographic search was conducted in SciELO and PubMed/Medline. The selection criteria included all types of articles in English and Spanish languages. In this review, the CYP1A2/CYP2D6/CYP3A4 genes that encode their respective enzymes have been described. The olanzapine/risperidone association increases the risk of prolonging the QT interval; chloroquine/hydroxychloroquine decreases metabolism and increases plasma concentration of risperidone; ritonavir decreases metabolism and increases plasma levels of hydroxychloroquine and lopinavir with the risk of prolonging the QT interval of the cardiac cycle and with a tendency to progression towards Torsades de Pointes. Ritonavir increases metabolism and decreases plasma levels of olanzapine. A low incidence of adverse effect was found between risperidone/azithromycin and olanzapine with azithromycin and hydroxychloroquine. Regarding the association of genes: CYP1A2*1D increases and CYP1A2*1F decreases the plasma concentration of olanzapine. Risperidone plasma levels are increased in CYP2D6 intermediate and poor metabolizers compared with normal metabolizers. Other studies indicate no significant association between poor metabolizers of CYP1A2 and CYP2D6 with increased pharmacokinetic parameters. It is concluded that there are potential risks of prolonging the QT interval due to pharmacokinetic interactions mediated by polymorphic genes CYP1A2 and CYP2D6 between risperidone or olanzapine and the drugs selected for the treatment of COVID-19.

4.
Expert Opin Drug Metab Toxicol ; 18(4): 261-275, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1956525

ABSTRACT

INTRODUCTION: Opioids play a fundamental role in chronic pain, especially considering when 1 of 5 Europeans adults, even more in older females, suffer from it. However, half of them do not reach an adequate pain relief. Could pharmacogenomics help to choose the most appropriate analgesic drug? AREAS COVERED: The objective of the present narrative review was to assess the influence of cytochrome P450 2D6 (CYP2D6) phenotypes on pain relief, analgesic tolerability, and potential opioid misuse. Until December 2021, a literature search was conducted through the MEDLINE, PubMed database, including papers from the last 10 years. CYP2D6 plays a major role in metabolism that directly impacts on opioid (tramadol, codeine, or oxycodone) concentration with differences between sexes, with a female trend toward poorer pain control. In fact, CYP2D6 gene variants are the most actionable to be translated into clinical practice according to regulatory drug agencies and international guidelines. EXPERT OPINION: CYP2D6 genotype can influence opioids' pharmacokinetics, effectiveness, side effects, and average opioid dose. This knowledge needs to be incorporated in pain management. Environmental factors, psychological together with genetic factors, under a sex perspective, must be considered when you are selecting the most personalized pain therapy for your patients.


Subject(s)
Analgesia , Analgesics, Opioid , Cytochrome P-450 CYP2D6 , Pain Management , Analgesia/methods , Analgesia/trends , Analgesics, Opioid/metabolism , Chronic Pain/drug therapy , Chronic Pain/metabolism , Cytochrome P-450 CYP2D6/metabolism , Humans , Pain Management/methods , Pain Management/trends , Pharmacogenetics , Phenotype , Precision Medicine/methods , Precision Medicine/trends
5.
Life (Basel) ; 11(7)2021 Jul 09.
Article in English | MEDLINE | ID: covidwho-1323288

ABSTRACT

In the herein reported case of a 42-year-old woman diagnosed with anxiety and depression, a long history of antidepressant ineffectiveness and adverse drug reactions was decisive for an in-depth medication review including pharmacogenetic panel testing. In detail, treatment attempts with paroxetine and escitalopram were ineffective and discontinued due to subjective gastrointestinal intolerance. Due to the worsening of the depression after the failed treatment attempts, admission to our clinic became necessary. Herein, owing to the collaboration of psychiatrists with clinical pharmacists, individualized incorporation of pharmacogenetic data into the process of antidepressant selection was enabled. We identified vortioxetine as a suitable therapeutic, namely for being most likely pharmacokinetically unaffected as predicted by pharmacogenetic panel testing and taking into account the current comedication, as well as for its favorable action profile. Herein, our collaborative effort proved to be successful and resulted in the patient's depression remission and clinic discharge with the interprofessionally selected pharmacotherapy. This exemplary case not only highlights the potential benefits and challenges of pre-emptive pharmacogenetic testing in antidepressant prescription, but also proposes an approach on how to put pharmacogenetics into practice.

6.
Drug Metab Pers Ther ; 2021 Mar 26.
Article in English | MEDLINE | ID: covidwho-1154104

ABSTRACT

OBJECTIVES: Hydroxychloroquine (HCQ) has been used as an off label for the management of coronavirus disease (Covid-19) infection with other drugs. However, different genetic variants can affect the metabolism of HCQ leading to inter-individual differences in its efficacy. In this study, we investigated the effects of variants in CYP2D6, CYP3A4 and CYP3A5 on the risk of Covid-19 infection among patients receiving HCQ for controlling rheumatoid arthritis (RA). METHODS: A total of 60 patients were genotyped for CYP2D6*2XN, CYP2D6*4, CYP3A4*1B and CYP3A5*2. They were receiving HCQ for the treatment of RA. The patients were evaluated clinically for fever and dry cough, radiologically via chest computed tomography (CT) and immunologically via anti-Covid-19 IgG and IgM titers. RESULTS: Variants in CYP2D6 significantly affected the grade of ground glass (CYP2D6*4 AA carriers showed the higher risk for grade 3) and the risk of positive anti-Covid-19 IgM (CYP2D6*2XN CC and CYP3A4*1B AA had the lowest risk), the duration of HCQ, the use of corticosteroids or gender did not affect the Covid-19 status significantly. CONCLUSIONS: In general, the outcome of the studied patients receiving HCQ was good (no deaths, no intubation needed). CYP2D6 variants could affect the outcome of Covid-19 infection.

7.
Viruses ; 13(3)2021 03 05.
Article in English | MEDLINE | ID: covidwho-1129785

ABSTRACT

The treatment of coronavirus disease 2019 (COVID-19) has been a challenge. The efficacy of several drugs has been evaluated and variability in drug response has been observed. Pharmacogenetics could explain this variation and improve patients' outcomes with this complex disease; nevertheless, several disease-related issues must be carefully reviewed in the pharmacogenetic study of COVID-19 treatment. We aimed to describe the pharmacogenetic variants reported for drugs used for COVID-19 treatment (remdesivir, oseltamivir, lopinavir, ritonavir, azithromycin, chloroquine, hydroxychloroquine, ivermectin, and dexamethasone). In addition, other factors relevant to the design of pharmacogenetic studies were mentioned. Variants in CYP3A4, CYP3A5, CYP2C8, CY2D6, ABCB1, ABCC2, and SLCO1B1, among other variants, could be included in pharmacogenetic studies of COVID-19 treatment. Besides, nongenetic factors such as drug-drug interactions and inflammation should be considered in the search for personalized therapy of COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19/genetics , SARS-CoV-2/drug effects , Animals , COVID-19/virology , Humans , Multidrug Resistance-Associated Protein 2 , Pharmacogenetics , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL